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The flow around a circular cylinder rotating with a constant angular velocity, placed
in a uniform stream, is investigated by means of two- and three-dimensional direct
numerical simulations. The successive changes in the flow pattern are studied as a
function of the rotation rate. Suppression of vortex shedding occurs as the rotation
rate increases (>2). A second kind of instabilty appears for higher rotation speed
where a series of counter-clockwise vortices is shed in the upper shear layer. Three-
dimensional computations are carried out to analyse the three-dimensional transition
under the effect of rotation for low rotation rates. The rotation attenuates the
secondary instability and increases the critical Reynolds number for the appearance of
this instability. The linear and nonlinear parts of the three-dimensional transition have
been quantified by means of the amplitude evolution versus time, using the Landau
global oscillator model. Proper orthogonal decomposition of the three-dimensional
fields allowed identification of the most energetic modes and three-dimensional flow
reconstruction involving a reduced number of modes.

1. Introduction
The flow around a circular cylinder is representative of many phenomena that

occur in fluid dynamics. This study describes the transition to turbulence in the
wake past a rotating circular cylinder, by means of two- and three-dimensional direct
numerical simulation. There are a number of experimental investigations and of
DNS studies concerning the three-dimensional vortex dynamics of a fixed cylinder,
e.g. Williamson (1992), Persillon & Braza (1998), and Braza, Faghani & Persillon
(2001), but only a few numerical studies devoted to the three-dimensional transition
including wall rotation effects. The flow field depends mainly on two parameters, the
Reynolds number Re and the rotation rate α: Re = U∞D/ν where D is the cylinder
diameter, U∞ is the free-stream velocity and ν is the kinematic viscosity of the fluid;
α = Dω0/(2U∞) where ω0 is the angular velocity of the cylinder.

The earliest experiments on the flow past a circular rotating cylinder were performed
by Prandtl (1925). More recently, the early phase of the establishment of the flow past
a circular cylinder started impulsively into rotation and translation was investigated
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Figure 1. Schematic of the physical problem.

experimentally and numerically by Badr et al. (1990). They observed that there is
no periodic vortex shedding for α > 2. Concerning the established state, the two-
dimensional flow for low and moderate Reynolds number under the rotation effect
was studied by Ingham & Tang (1990) and later by Kang, Choi & Lee (1999).
Stojković, Breuer & Durst (2002) were the first to notice the existence of a second
shedding mode for 4.8 � α � 5.15 at Re = 100. The two-dimensional numerical study
of Stojković et al. (2003) confirmed the existence of this second mode in the Reynolds
number range 60 � Re � 200. Different flow regimes as rotation speed increases were
investigated by Mittal & Kumar (2003), at Re = 200, 0 � α � 5. Cliffe & Tavener
(2004) studied the effect of the rotation of a cylinder on the critical Reynolds and
Strouhal numbers at the Hopf bifurcation point. Apart from the study of Tokumaru
& Dimotakis (1993) on the aspect ratio influence on the mean lift coefficient, and the
more recent study of Mittal (2004) (Re = 200 and α = 5), to our knowledge there are
no studies qualifiying the three-dimensional effects of the rotation in the Reynolds
number range of the present study.

In the present paper, the flow around a rotating circular cylinder placed in a
uniform stream, figure 1, is investigated by means of two- and three-dimensional
direct numerical simulations, using the code ICARE/IMFT, Braza, Chassaing &
Ha-Minh (1986), Persillon & Braza (1998). The objectives of the present work are
summarized as follows:

(a) To analyse the onset of the three-dimensional transition phenomena under the
rotation effect by means of direct numerical simulations, which offers the possibility
of dissociating the purely three-dimensional from the two-dimensional mechanisms,
which co-exist and interact in the physical experiment.

(b) To study the amplification of the three-dimensional instability process in the
spanwise direction using the DNS results, by the Landau global oscillator model,
and find the critical Reynolds number for the appearance of the secondary instablity
under the rotation effect.

(c) To analyse the organized modes under the rotation effect by a three-dimensional
proper orthogonal decomposition.

2. Summary of the numerical method
The two- and three-dimensional simulations were carried out using the code

ICARE of the IMFT, in finite-volume formulation. The governing equations are
the continuity and the Navier–Stokes equations for an incompressible fluid, written
in general curvilinear coordinates in the (x, y)-plane, while the spanwise component
z is in Cartesian coordinates. The numerical method is based on the pressure–
velocity formulation using a predictor–corrector pressure scheme, Braza et al. (1986).
The temporal discretization adopts the Peaceman & Rachford (1955) scheme in an
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alternating-direction-implicit formulation. The method is second-order accurate in
time and space. The staggered grids by Harlow & Welch (1965) are employed for the
velocity and pressure variables.

H-type grids are used because they allows more physical boundary conditions to be
introduced on the external boundaries avoiding branch-cut lines. A grid dependence
study for the three-dimensional flow around a cylinder with the same code is presented
in Persillon & Braza (1998), and optimum grids have been chosen in the present study.
The grid used is (250 × 100 × 80). The spanwise length of the computational domain
is 12D where D is the cylinder diameter. The boundary conditions include a non-
reflecting condition at the outer boundary to avoid feedback effects, according to
Jin & Braza (1993). A detailed presentation of the boundary conditions for the
cylinder can be found in Persillon & Braza (1998). For the spanwise free edges of
the computational domain, periodic boundary conditions are applied. All presented
physical quantities are made dimensionless using upstream velocity and cylinder
diameter.

3. Successive stages of the two-dimensional transition
For low Reynolds numbers, Re < 48, the flow remains steady as the rotation

rate increases. For higher Reynolds numbers, an increase in the rotation rate yields
successive changes to the flow regime, as described below. At each Reynolds number,
the same successive changes occur as a function of α. For low rotation rate α < αL1,
figure 2 shows unsteady flow development similar to the von-Kármán vortex shedding
(mode I). This pattern is asymmetric towards the upper part of the cylinder due to
the rotation sense. The effect of increasing rotation is to attenuate the contra-rotating
vortices from the lower side of the cylinder; thus the instability mode vanishes and the
flow is steady for αL1 < α < αL2. Owing to the increasing rotation rate in association
with the strong viscous effect near the wall, the shearing mechanism is increased, and
a second instability, mode II, appears in the range αL2 < α < αL3. In this interval,
only counter-clockwise vortices are shed from the upper part of the cylinder with a
large wavelength (figure 2, bottom). For α > αL3, the shearing rate becomes very high
and increases the viscous effects near the wall. As a result, the flow becomes steady.
For α < αL1, the Strouhal number St = f D/U∞ of vortex shedding is practically
constant and decreases as a function of α before the first bifurcation, and is very
low in the second mode interval, as shown in figure 3(b). The critical α values are
presented in figure 3(a) for different Reynolds numbers in comparison with results of
Mittal & Kumar (2003) and Stojković et al. (2002, 2003). This figure shows that the
critical Reynolds number for the appearance of the first flow unsteadiness increases
with α.

4. Three-dimensional transition
The objectives of this section are to analyse the onset and modification of

three-dimensional transition phenomena under the rotation effect with respect to
the coherent structures in the wake. Without rotation, at Re = 200, the three-
dimensionality starts from an amplification of the w-velocity component (in the
spanwise direction) versus time in the near wake (figure 4a). There is a linear
amplification rate followed by a nonlinear state that leads finally to a saturation state
as reported by Persillon & Braza (1998). The w amplification corresponds to the
development of a secondary instability involving the three-dimensional modification
of the von Kármán mode which starts to display a regular spanwise undulation
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Figure 2. Iso-vorticity −2 � ωz � +2, successive steps in the two-dimensional transition as α
increases, Re = 200.
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Figure 3. Global parameters of the two-dimensional transition: (a) critical rotation rate
versus Reynolds number, stability diagram; (b) St as a function of α for different Re.

(mode A). The spanwise undulation is shown in figure 5(a)(i), where the spanwise
wavelength λz/D is found equal to 4. When wall rotation is applied (α = 1.5) the
flow displays a drastic damping of the w amplitudes. Three different initial conditions
were used: a three-dimensional field from DNS at Re = 200 and α = 0 (figure 4a):
flow at rest, Re = 200 and α = 1.5; and a two-dimensional field at the same Re and
α. The same kind of w damping was found for all three different initial conditions.
Therefore there is no secondary instability for Re = 200 and α = 1.5, and the rotation
increases the critical Reynolds number for the appearance of this instability. At higher
Reynolds number, Re = 300, the amplification of the w component is clearly shown
(figure 4c) for α = 0.5, the initial condition being from a two-dimensional Navier–
Stokes simulation with α = 0.5. The established state is shown in figure 5(a)(iii),
where the spanwise undulation is seen, with λz/D = 4, figure 5(b), showing that the
rotation effects maintain mode A even at Re = 300.
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Figure 4. Temporal evolution of the w-velocity component at (x/D, y/D, z/D) = (1.47, 0, 6)
(a) Re = 200, α = 0; (b) Re = 200, α = 1.5; (c) Re = 300, α = 0.5.
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Figure 5. Secondary instability and spanwise evolution of the coherent vorticies. (a)
Iso-vorticity surfaces for three-dimensional fields, ωz = ±0.25, ±0.5. (b) Spanwise undulation
of w/U0, Re = 300, α = 0.5; (x/D, y/D) = (1.01, 1.5). (c) ωz iso-vorticity contours; top,
two-dimensional simulations; bottom, three-dimensional simulations, Re = 300, α = 0.5.

The median section of the flow is compared for a two- and three-dimensional
computation, z/D = 6, (figure 5c) to split the purely three-dimensional effects from
the two-dimensional ones. A number of smaller-scale vortices in the shear layer
appear in the three-dimensional simulations. The von Kármán vortices are larger in
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Figure 6. (a) Amplification of the w-velocity component; (b) normalized logarithmic ampli-
tude evolution versus time, evaluation of σr . Top Re = 200, α = 0; bottom Re = 300, α = 0.5.

the three-dimensional case. The rotation in three-dimensional computations induces
a modification in the strain axis of the von Kármán vortices.

The amplification of the secondary instability under the wall rotation effect can be
studied by means of the Landau global oscillator model, Provansal, Mathis & Boyer
(1987),

∂A

∂t
= σrA︸︷︷︸

linear growth

− lr |A3|︸ ︷︷ ︸
nonlinear

. (4.1)

The real parts of the coefficients σr and lr can be evaluated by the present DNS
study, providing the amplitude variation as a function of period, A/Amax , figure 6(a).
σr can be evaluated by the log(A/Amax) variation with time, figure 6(b). For Re = 200
(α = 0), σr = 0.013 and for Re = 300 (α = 0.5), σr = 0.041. The σr evaluation also
allows the assesment of the nonlinear growth coefficient near the saturation threshold
lr = σr × A/|A3|. lr is found to be positive, which corresponds to a supercritical
bifurcation. This means that the bifurcated state exists for Reynolds numbers above
critical. lr = 3.055 and 2.314 for Re = 200 and 300 respectively.

From the Landau equation (4.1), the critical Reynolds number for the appearance
of the secondary instability, for α = 0.5, can be evaluated by performing three-
dimensional simulations near the threshold, with (Re − Recr )/Recr a small parameter.
The exponential growth coefficient σr can be written as a function of the
critical Reynolds number near the threshold: σr = k (Re − Recr ). According to
Provansal et al. (1987), k is a reduced frequency and σr can be also written as
σr = (1/5)

(
ν/D2

)
(Re − Recr ) where ν is the kinematic viscosity and D the cylinder

diameter.
If this global oscillator model is verified by the physics of the present bifurcation,

σr must therefore vary linearly as a function of Reynolds number near the threshold.
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Figure 7. Linear amplification versus Reynolds number; assessment of the critical Reynolds
number associated to the secondary instability at α = 0.5.

This is examined by the present direct simulation, for α = 0.5. Figure 7 shows the
σr variation versus Reynolds number. The Reynolds number 300 is too far from the
threshold and this point is not taken into account for the assessment of the critical
value. The four points corresponding to lower Reynolds numbers clearly indicate a
straight line definition that cuts the Re axis at the value 219.8. Therefore, the critical
Reynolds number is higher than for the α = 0 case, evaluated by the DNS of Persillon
& Braza (1998).

The above discussion provides the amplification characteristics of the three-
dimensional global instability by a DNS approach and by a simpler oscillator model.
In the following section we analyse the energy of the organized modes in space and
reconstruct the pattern of the three-dimensional coherent structures.

5. POD analysis
The analysis of the three-dimensional coherent pattern is carried out by means

of a proper orthogonal decomposition (POD), using the snapshot method, Berkooz,
Holmes & Lumley (1993). A subdomain of 160 × 52 × 80 points has been stored
for 6 fundamental periods of the votrex shedding; 170 successive instantaneous fields
were used. The domain size and time-dependent storage are sufficient to capture the
secondary instability and of the main vortex pattern.

Figure 8(a) shows the energy diagram of the first 100 POD modes on a log-log
scale, and figure 8(b) shows a zoom of the first 20 modes on a linear-log scale for
Reynolds number 200 at α = 0 and α = 1.5. The rotation is found to increase the
energy of the modes, as well as to slightly delay the energy decay, for small α values
and for two similar Reynolds numbers. Comparing the slope of the energy decay
in two-dimensional simulations, figure 8(c), and the three-dimensional decay, it can
be seen that the latter is less abrupt than in the two-dimensional case. It displays a
more chaotic character which is captured by the DNS. Figure 9 shows the topology
of the first five POD modes for Re = 300 and α = 0.5. Mode 1 is very close to
the time-averaged flow, forming two main vortex lobes downstream of the cylinder.
The averaged vortex pattern is subjected to a transverse undulation, according to the
secondary instability. The two next POD modes, 2 and 3, have comparable energy.
They are composed of a single row of opposite-sign patterns. Their three-dimensional
evolution shows the insertion of a half-wavelength pattern between the principal
undulation shown for mode 1. This pattern is more pronounced in mode 3. Modes
4 and 5 are more fragmented by this half-wavelength spanwise pattern, which is



8 R. El Akoury, M. Braza, R. Perrin, G. Harran, and Y. Hoarau

Mode

E
ne

rg
y

10–4

20 100

10–3

10–2

10–2

10–1

100

101 (a) (b) (c)

Mode

%
 e

ne
rg

y

1 4 7 10 13 16 20

10–4

10–2

100

102

Re = 200, α = 0
Re = 200, α = 1.5

Mode

%
 e

ne
rg

y

1 4 7 10 13 16 20
10–5

10–3

10–1

101
2D
3D

Re = 200, α = 0
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Figure 10. ωz and ωx iso-vorticity surface reconstructions for Re = 300, α = 0.5. (a)
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(e) 19 modes.

developed beyond x/D = 1D and a two-vortex row is organized as with respect to
the rear axis. The three-dimensional flow reconstruction is shown in figure 7. A 3-mode
reconstruction does not provide a vortex pattern comparable with the instantaneous
field. It can be seen that the flow pattern reconstructed with 11 and 19 modes
compares quite well to the instantaneous one, especially concerning the spanwise
undulation. This reconstruction also captures the modification of the strain axis of the
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coherent structures due to the rotation. The reconstruction with 19 modes shows the
‘braid’-like three-dimensional pattern of the streamwise vortices more clearly than
the 7-mode reconstruction. Therefore, to capture the secondary instability and to
perform an efficient mode A reconstruction, an order of 15–19 modes is needed. It
is recalled that the rotation introduces a global vorticity ωz that is superimposed on
the instantaneous vorticity distribution and strengthens the vorticity component in
the z-direction. Therefore, the von-Kármán vortex rows become more stable to small
spanwise perturbations, and as shown by the present DNS, they keep the wavelength
of mode A at the present Reynolds number, 300.

6. Conclusion
The present study obtains two-dimensional transition steps in the flow around a

rotating circular cylinder in good agreement with previous studies. The main objective
is the analysis of the three-dimensional transition at low Re and α. A number of
three-dimensional computations were carried out near the threshold of the bifurcation
to the secondary instability. The amplification of the global instability is analysed
by DNS and by a global oscillator model. It is shown that the rotation attenuates
the secondary instability and increases the critical Reynolds number. This critical
Re has been evaluated as Recr = 219.8, by the DNS approach and by the Landau
model for α = 0.5. The analysis of the organized flow pattern was carried out by
proper orthogonal decomposition. The three-dimensional flow reconstructions show
that about 19 modes are sufficient to capture the secondary instability related to the
spanwise undulation. This work has a significant implications for the understanding
of the wall rotation effects that occur in a number of applications in rotating systems,
as well as in flow control strategies using rotating cylinders.

We acknowledge valuable scientific discussions with G. Martinat, the collaboration
of D. Faghani and A. Barthet in the POD approach, and the CPU allocations of the
national computer centres CINES, IDRIS, CALMIP and GRIDMIP.
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